Complexification of the projective and injective tensor products
نویسندگان
چکیده
منابع مشابه
Fuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملOn The Interpolation of Injective or Projective Tensor Products of Banach Spaces
We prove a general result on the factorization of matrix-valued analytic functions. We deduce that if (E0, E1) and (F0, F1) are interpolation pairs with dense intersections, then under some conditions on the spaces E0, E1, F0 and F1, we have [E0⊗̂F0, E1⊗̂F1]θ = [E0, E1]θ⊗̂[F0, F1]θ, 0 < θ < 1. We find also conditions on the spaces E0, E1, F0 and F1 , so that the following holds [E0 ∨ ⊗F0, E1 ∨ ⊗F1...
متن کاملOn the Geometry of Projective Tensor Products
In this work, we study the volume ratio of the projective tensor products `p ⊗π `q ⊗π `r with 1 ≤ p ≤ q ≤ r ≤ ∞. We obtain asymptotic formulas that are sharp in almost all cases. As a consequence of our estimates, these spaces allow for a nearly Euclidean decomposition of Kašin type whenever 1 ≤ p ≤ q ≤ r ≤ 2 or 1 ≤ p ≤ 2 ≤ r ≤ ∞ and q = 2. Also, from the Bourgain-Milman bound on the volume rat...
متن کاملfuzzy projective modules and tensor products in fuzzy module categories
let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...
متن کاملp-Summing Operators on Injective Tensor Products of Spaces
Let X, Y and Z be Banach spaces, and let ∏ p(Y, Z) (1 ≤ p < ∞) denote the space of p-summing operators from Y to Z. We show that, if X is a £∞-space, then a bounded linear operator T : X⊗̂ǫY −→ Z is 1-summing if and only if a naturally associated operator T : X −→ ∏ 1(Y, Z) is 1-summing. This result need not be true if X is not a £∞-space. For p > 1, several examples are given with X = C[0, 1] t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2008
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm189-2-2